Energy Exploration & Exploitation (May 2024)

Stability analysis and control countermeasures of surrounding rock of gob-side entry formed by roof-cutting in inclined coal seams

  • Enze Zhen,
  • Shizhuo Dong,
  • Xiaowei Xu,
  • Yajun Wang,
  • Mengxiang Wang

DOI
https://doi.org/10.1177/01445987241227574
Journal volume & issue
Vol. 42

Abstract

Read online

The stability of the surrounding rock in the inclined coal seam stope is crucial for the safety of the gob-side entry. In this article, we systematically analyze the surrounding rock stability of the gob-side entry formed by roof-cutting (GEFR) in an inclined coal seam. We identify three forms of roof structure evolution in the formation process of GEFR and analyze the two main modules affecting the deformation of the surrounding rock structure. We determine the critical elements of surrounding rock deformation in different stages of the GEFR retaining process. Further, we propose a classification of the deformation of the surrounding rock structure of GEFR into stress and structural types during stabilization. We analyze the length of the gangue side's bearing area and calculate the lateral gangue's impact energy. We establish three instability modes of the roof based on the fractured state of the roof structure of the GEFR and provide a mechanical criterion of instability. Finally, based on the results of our theoretical analysis, we propose a control principle for the surrounding rock deformation of GEFR and establish countermeasures for controlling the roof-cutting angle and an asymmetric coupling support system. A field case study was conducted under conditions involving an inclined thick coal seam to investigate the surrounding rock deformation and overburden stress evolution using field monitoring data. The field test results confirm that the control measures of the control roof-cutting angle and the asymmetric coupling support system positively impact the stability of the surrounding rock of the roof-cutting entry in an inclined coal seam.