Insects (May 2021)

Combined Effect of Entomopathogens against <i>Thrips tabaci</i> Lindeman (Thysanoptera: Thripidae): Laboratory, Greenhouse and Field Trials

  • Sehrish Gulzar,
  • Waqas Wakil,
  • David I. Shapiro-Ilan

DOI
https://doi.org/10.3390/insects12050456
Journal volume & issue
Vol. 12, no. 5
p. 456

Abstract

Read online

Onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae) is one of the most damaging insect pests of onions, Allium cepa L., which is an economically important agricultural crop cultivated worldwide. In this study, the combined application of entomopathogenic nematodes with entomopathogenic fungi against different soil dwelling stages of T. tabaci was evaluated. The nematodes included Heterorhabditis bacteriophora (VS strain) and Steinernema feltiae (SN strain), and fungi included Beauveria bassiana (WG-11) and Metarhizium anisopliae (WG-02); all four paired combinations (nematode + fungus) were included. In a small cup bioassay, only the combined application of H. bacteriophora and B. bassiana (WG-11) caused a synergistic interaction against pre-pupae, while all other combinations were compatible in an additive manner against pupae and late second instars. In a larger arena, a potted soil bioassay, again, combined applications of both pathogens produced greater mortality compared to single applications of each pathogen; all the combinations exhibited additive interactions, with the highest mortality observed in pre-pupae, followed by pupae and late second instar larvae using H. bacteriophora and B. bassiana (WG-11). Additionally, in the potted plant bioassay, lower adult emergence was observed from treated groups compared to control groups. Under field conditions, lower numbers of adults and larvae were found in treated groups relative to controls. Overall, the pre-pupal stage was more susceptible to the pathogen treatments, followed by pupae and late second instar larvae, and also combined applications of both pathogens suppressed the adult population. Combined application of entomopathogenic nematodes and fungi could be used for integrated pest management (IPM) of T. tabaci in onion production systems.

Keywords