IEEE Access (Jan 2024)

Enhancing Grid-Connected Microgrid Power Dispatch Efficiency Through Bio-Inspired Optimization Algorithms

  • Itrat Fatima,
  • Jarallah Alqahtani,
  • Raja Habib,
  • Muhammad Akram,
  • Tabbasum Naz,
  • Ali Alqahtani,
  • Muhammad Atif,
  • Sultan S. Alyami

DOI
https://doi.org/10.1109/ACCESS.2024.3360340
Journal volume & issue
Vol. 12
pp. 23578 – 23594

Abstract

Read online

This work tackles the scheduling challenge of microgrids for smart homes, aiming to optimize energy management with both renewable and non-renewable sources. A power control center orchestrates the microgrid, coordinating distributed energy resources (DERs) for peak demand fulfillment and excess energy utilization. We propose a proportional-integral control system for efficient demand response, achieving reduced post-scheduling costs and a peak-to-average ratio. Comparative analysis reveals Ant Colony Optimization outperforms Binary Particle Swarm Optimization in cost and peak-to-average ratio reduction. Simulations explore two scenarios: Case 1 integrates with the main grid for reliability, while Case 2 utilizes solely renewable energy sources. Although Case 2 exhibits superior performance, Case 1’s dependence on the main grid offers greater real-world feasibility. Therefore, Case 1 with optimized DER scheduling emerges as the recommended solution for enhancing microgrid efficiency and ensuring reliable power supply in smart homes.

Keywords