PLoS Neglected Tropical Diseases (Jan 2018)

The glutamine synthetase of Trypanosoma cruzi is required for its resistance to ammonium accumulation and evasion of the parasitophorous vacuole during host-cell infection.

  • Marcell Crispim,
  • Flávia Silva Damasceno,
  • Agustín Hernández,
  • María Julia Barisón,
  • Ismael Pretto Sauter,
  • Raphael Souza Pavani,
  • Alexandre Santos Moura,
  • Elizabeth Mieko Furusho Pral,
  • Mauro Cortez,
  • Maria Carolina Elias,
  • Ariel Mariano Silber

DOI
https://doi.org/10.1371/journal.pntd.0006170
Journal volume & issue
Vol. 12, no. 1
p. e0006170

Abstract

Read online

Trypanosoma cruzi, the etiological agent of Chagas disease, consumes glucose and amino acids depending on the environmental availability of each nutrient during its complex life cycle. For example, amino acids are the major energy and carbon sources in the intracellular stages of the T. cruzi parasite, but their consumption produces an accumulation of NH4+ in the environment, which is toxic. These parasites do not have a functional urea cycle to secrete excess nitrogen as low-toxicity waste. Glutamine synthetase (GS) plays a central role in regulating the carbon/nitrogen balance in the metabolism of most living organisms. We show here that the gene TcGS from T. cruzi encodes a functional glutamine synthetase; it can complement a defect in the GLN1 gene from Saccharomyces cerevisiae and utilizes ATP, glutamate and ammonium to yield glutamine in vitro. Overall, its kinetic characteristics are similar to other eukaryotic enzymes, and it is dependent on divalent cations. Its cytosolic/mitochondrial localization was confirmed by immunofluorescence. Inhibition by Methionine sulfoximine revealed that GS activity is indispensable under excess ammonium conditions. Coincidently, its expression levels are maximal in the amastigote stage of the life cycle, when amino acids are preferably consumed, and NH4+ production is predictable. During host-cell invasion, TcGS is required for the parasite to escape from the parasitophorous vacuole, a process sine qua non for the parasite to replicate and establish infection in host cells. These results are the first to establish a link between the activity of a metabolic enzyme and the ability of a parasite to reach its intracellular niche to replicate and establish host-cell infection.