Технічна електродинаміка (Apr 2023)
ELECTRODYNAMICS OF HIGH-PRECISION ITERATIVE FEED ELECTRIC DRIVE OF MACHINING CENTER WITH INERTIAL LOAD
Abstract
The kinematical diagram and refined mathematical model of steady motion in machining mode of high-precision iterative multichannel differential-geared electric feed drive of machining center with substantially inertial working tool are presented. The structural-algorithmic diagram of a three-channel control system of an electric drive, represented by various options for implementing an iterative algorithm for the interaction of control channels is given. Concretization of computer model is completed to simulation of movements of iterative two- and three-channel electric drive with subordinated adjustment of control channels, destined for displacement of working tool feed mechanism in face milling mode. Comparative assessment in time and frequency areas of quality indicators to improve the feed accuracy using the proposed multichannel electromechanical system is completed. Comparison is made with similar on purpose, but different on speed of operation, modern single-channel gearless feed electric drives, which traditionally used on heavy metal cutting machines and machining centers. It is shown that in compensated two- and three-channel electric drive compared to even broadband single-channel asynchronous feed electric drive with frequency-current vector control a significant increase not only in speed of operation, but also in the dynamic accuracy of feed control practically in the entire range of working tool movements can be achieved. It is determined that iterative three-channel electric drive potentially provides a level of quality control of the working tool, unattainable not only in the corresponding traditional single-channel electric feed drives of various types, but in a similar construction two-channel differential-reducer feed electric drive. References 10, figures 5, table 1.
Keywords