Separations (Dec 2022)
Phytochemical, Antimicrobial, Antioxidant, and In Vitro Cytotoxicity Evaluation of <i>Echinops erinaceus</i> Kit Tan
Abstract
Wild plants are used by many cultures for the treatment of diverse ailments. However, they are formed from mixtures of many wanted and unwanted phytochemicals. Thus, there is a necessity to separate the bioactive compounds responsible for their biological activity. In this study, the chemical composition as well as antimicrobial and cytotoxic activities of Echinops erinaceus Kit Tan (Asteraceae) were investigated. This led to the isolation and identification of seven compounds, two of which are new (erinaceosin C3 and erinaceol C5), in addition to methyl oleate (C1) and ethyl oleate (C2), loliolide (C4), (E)-p-coumaric acid (C6), and 5,7,3`,5`-tetrahydroxy flavanone (C7). The structures of the isolated compounds were elucidated by 1D, 2D NMR, and HR-ESI-MS. The methanol extract showed the highest antimicrobial activity among the tested extracts and fractions. The n-hexane and EtOAc extracts showed remarkable antimicrobial activity against B. subtilus, P. aeruginosa, E. coli, and C. albicans. A cytotoxicity-guided fractionation of the most bioactive chloroform extract resulted in the isolation of bioactive compounds C1/C2, which showed significant cytotoxicity against HCT-116 and CACO2 cell lines (IC50 24.95 and 19.74 µg/mL, respectively), followed by compounds C3 (IC50 82.82 and 76.70 µg/mL) and C5 (IC50 99.09 and 87.27 µg/mL), respectively. The antioxidant activity of the bioactive chloroform fractions was screened. Molecular docking was used to explain the results of the antimicrobial and anticancer activities against five protein targets, including DNA gyrase topoisomerase II, enoyl-acyl carrier protein reductase of S. aureus (FabI), dihydrofolate reductase (DHFR), β-catenin, and human P-glycoprotein (P-gp).
Keywords