Journal of Translational Medicine (Feb 2018)
Identification and validation a TGF-β-associated long non-coding RNA of head and neck squamous cell carcinoma by bioinformatics method
Abstract
Abstract Background The role of transforming growth factorβ (TGF-β)-induced tumor progression in advanced malignancy is well established, but the involvement of long non-coding RNAs (lncRNAs) in TGF-β signaling remains unclear. This study aimed to identify TGF-β-associated lncRNAs in head and neck squamous cell carcinoma (HNSCC). Methods Expression profiling of lncRNAs was obtained using Gene Expression Omnibus and The Cancer Genome Atlas. Real-time quantitative PCR was used to analyze the expression of EPB41L4A-AS2 in HNSCC cell line. We used bioinformatics resources (DAvID) to conduct Gene Ontology biological processes and KEGG pathways at the significant level. Wound healing assay, cell migration and invasion assays, were used to examine the effects of EPB41L4A-AS2 on tumor cell metastasis in vivo. Protein levels of EPB41L4A-AS2 targets were determined by western blot. Results A novel TGF-β-associated lncRNA, EPB41L4A-AS2, was found downregulated by TGF-β and associated with invasion and metastasis. The relationship of EPB41L4A-AS2 with the clinicopathological features and prognosis of HNSCC patients was evaluated. Bioinformatic analyses revealed that EPB41L4A-AS2 may be involved in processes associated with the tumor-associated signaling pathway, especially the TGF-β signaling pathway. Furthermore, a TGF-β-induced epithelial-to-mesenchymal transition (EMT) model was established. Low EPB41L4A-AS2 expression was determined, and overexpression of this gene inhibited cell migration and invasion in the EMT model. Moreover, EPB41L4A-AS2 suppressed TGFBR1 expression. Conclusions EPB41L4A-AS2 might serve as a negative regulator of TGF-β signaling and as an effective prognostic biomarker and important target in anti-metastasis therapies of HNSCC patients.
Keywords