Eurasian Chemico-Technological Journal (Sep 2018)
Nanosized Catalysts in the Process of Hydrogenating Acetylene
Abstract
Hydrogenating process of the acetylene to ethylene using automated flow catalytic installation at nanoscaled catalysts Ni, Co and carriers at a pressure of 5 atm was studied. The actions of carriers and nanosized catalysts during hydrogenation reaction of acetylene to ethylene at low temperatures in the range from 50–120 °С were analyzed. With ratio of С2Н2:Н2 being equal to (1:2), at 80 °С the aluminum oxide carrier exhibits an activity, conversion of acetylene makes up 70%, when using zeolite 3A it is 63%. When the temperature rises to 120 °С, the aluminum activity is decreasing and conversion is 53%. However, zeolite exhibits its activity at high temperatures, at a temperature of 120 °С conversion of acetylene reaches to 73.5%. It is shown that with increasing of hydrogen ratio, the ethylene yield increases from 5 to 10.7% using catalyst 5% Ni/3A. In addition, in reaction of acetylene hydrogenation there are not formed waste products. For this process, the optimum reaction temperature is 80 °С, feedstock ratio (1:3) is positive, where the ethylene yield increased up to 16.7% and at catalyst to 5% Co/3A.