Archives of Razi Institute (Apr 2022)
Toxic Metal –Mediated Neurodegradation: A Focus on Glutathione and GST Gene Variants
Abstract
Increasing pieces of evidence have supported those chemicals from industrial, agricultural wastes and organoleptic activities play important role in the development of neurological disorders. The frequency of neurological disorders is increased to a much extent in recent years with the advancements in science and technology. Google Scholar, PubMed, and Scopus databases were selected to search the relevant information by using keywords including “Heavy metals”, “Neurotoxicity”, “Glutathione”, “Glutathione AND Neurodegenerative disorders” etc. Heavy metals are particularly recognized as a major resource of toxicities during the stage of early pregnancy where a fetus gets exposed to them from maternal activities and circulation. As infants have a weak immune system and cannot respond to the specific challenge as faced by the body during mercury, zinc, iron, and cadmium exposure. Daily diet and drinking habits in addition to industrial activities also form a major field of study under investigation. This study aims to investigate the role of these metals in the accumulation of pollutants in the brain, liver, and kidneys hence leading to serious consequences. Moreover, their prevalence in teenagers that are under the age of ten years is being observed that leads them to learn, writing, and intellectual abilities. Males are more affected due to their hormonal differences. The role of the GST gene in the development of cognitive conditions and its phenotypes has been discussed thoroughly in this review. The mutations of GST lead to the accumulation of peroxides and superoxides which exacerbate oxidative damage to cells. Binding of toxic metals to GSH genes and the role of glutathione transferase genes is was demonstrated in this review.
Keywords