Energies (Nov 2024)

Explainable AI-Based Ensemble Clustering for Load Profiling and Demand Response

  • Elissaios Sarmas,
  • Afroditi Fragkiadaki,
  • Vangelis Marinakis

DOI
https://doi.org/10.3390/en17225559
Journal volume & issue
Vol. 17, no. 22
p. 5559

Abstract

Read online

Smart meter data provide an in-depth perspective on household energy usage. This research leverages on such data to enhance demand response (DR) programs through a novel application of ensemble clustering. Despite its promising capabilities, our literature review identified a notable under-utilization of ensemble clustering in this domain. To address this shortcoming, we applied an advanced ensemble clustering method and compared its performance with traditional algorithms, namely, K-Means++, fuzzy K-Means, Hierarchical Agglomerative Clustering, Spectral Clustering, Gaussian Mixture Models (GMMs), BIRCH, and Self-Organizing Maps (SOMs), across a dataset of 5567 households for a range of cluster counts from three to nine. The performance of these algorithms was assessed using an extensive set of evaluation metrics, including the Silhouette Score, the Davies–Bouldin Score, the Calinski–Harabasz Score, and the Dunn Index. Notably, while ensemble clustering often ranked among the top performers, it did not consistently surpass all individual algorithms, indicating its potential for further optimization. Unlike approaches that seek the algorithmically optimal number of clusters, our method proposes a practical six-cluster solution designed to meet the operational needs of utility providers. For this case, the best performing algorithm according to the evaluation metrics was ensemble clustering. This study is further enhanced by integrating Explainable AI (xAI) techniques, which improve the interpretability and transparency of our clustering results.

Keywords