Applied Sciences (Aug 2024)
Coupled Non-Ordinary State-Based Peridynamics Model for Ductile and Brittle Solids Subjected to Thermal Shocks
Abstract
A coupled thermomechanical non-ordinary state-based peridynamics (NOSB-PD) model is developed to simulate the dynamic response arising from temperature and to predict the crack propagation with thermal shocks in brittle and ductile solids. A unified multiaxial constitutive model with damage growth is proposed to simultaneously describe the ductile and brittle fracture mechanisms. The main idea is the use of Lemaitre’s model to describe ductile damage behavior and the use of tensile strength instead of yield stress in Lemaitre’s model to describe brittle damage behavior. A damage-related fracture criterion is presented in the PD framework to predict crack propagation, which avoids numerical oscillations when using the traditional bond stretch criterion. To capture the dynamic plastic response induced by thermal shocks, the time and stress integration are achieved by an alternating solving strategy and implicit return-mapping algorithm. Several numerical examples are presented to show the performance of the proposed model. Firstly, a thermomechanical problem simulation based on both the proposed model and the FEM illustrate the accuracy of the proposed model in studying the thermal deformation. Moreover, a benchmark brittle fracture example of the Kalthoff–Winkler impact test is simulated, and the crack path and angle are similar to the experimental observations. In addition, the simulation of ductile fracture under different loads illustrates the effect of temperature on crack propagation. Finally, the simulation of the 2D quenching test shows the ability of the proposed model in predicting crack propagation under thermal shocks.
Keywords