Motricidad (Sep 2010)

MODELO DE ESTUDIO DE LA ESTRUCTURA CONDICIONAL A TRA´VES DE UN ANÁLISIS MULTIVARIANTE ENFOCADO A LA DETECCIÓN DE TALENTOS EN JUGADORES DE BALONMANO

  • J.J. Fernández,
  • Mª H. Vila,
  • F. A. Rodríguez

Journal volume & issue
Vol. 12, no. 0
pp. 175 – 191

Abstract

Read online

<p class="titulo1" align="center">&nbsp;</p><p class="titulo1" align="center"><strong>RESUMEN </strong><span class="tabulado"><br /></span></p> <p class="tabulado" align="justify">Los objetivos de esta investigaci&oacute;n fueron el an&aacute;lisis de las diferencias antropom&eacute;tricas, condici&oacute;n f&iacute;sica y las caracter&iacute;sticas del entrenamiento de j&oacute;venes jugadores de balonmano de diferentes categor&iacute;as de edad, desde una perspectiva multidimensional. Las variables que conforman el modelo multivariate corresponden a varios tests, que nos permitir&aacute; predecir el nivel de rendimiento en las diferentes categor&iacute;as de edad (Solanellas y Rodr&iacute;guez, 1996). En este estudio participaron 105 jugadores de balonmano de edades comprendidads entre los 13 y 18 a&ntilde;os, la selecci&oacute;n la realiz&oacute; la Federaci&oacute;n Gallega de Balonmano (Espa&ntilde;a), entre los mejores jugadores de cada club. Se agrupados en tres categor&iacute;as de edad: 13-14 (INF), 15-16 (CAD) y 17-18 (JUV). La valoraci&oacute;n multidimensional const&oacute; de 1) un cuestionario espec&iacute;fico para analizar sus antecedentes deportivos; 2) una valoraci&oacute;n cineantropom&eacute;trica, que se centr&oacute; en el estudio de la composici&oacute;n corporal, somatotipo, y el grado de maduraci&oacute;n sexual; 3) la Bater&iacute;a Eurofit (Council of Europe, 1988) para valorar la condici&oacute;n f&iacute;sica general; y 4) una bater&iacute;a de saltos (SJ, CMJ, y Abalakov). Para llevar a cabo estos objetivos se realiz&oacute; un an&aacute;lisis estad&iacute;stico multivariante denominado an&aacute;lisis discriminante (inclusi&oacute;n por pasos), entre los jugadores que fueron seleccionados o no seleccionados por un comit&eacute; de expertos en balonmano, para jugar con el equipo nacional gallego. Los criterios de inclusi&oacute;n fueron la Lambda De Wilks, el estad&iacute;stico F, la correlaci&oacute;n can&oacute;nica y el porcentaje de jugadores clasificados correctamente. La capacidad predictiva del modelo multivariante del an&aacute;lisis discriminante, alrededor del 95 % o m&aacute;s de los jugadores fueron clasificados correctamente utilizando todas las variables. Las variables que entraron en el modelo predictivo utilizando la primera funci&oacute;n discriminante var&iacute;a para cada categor&iacute;a de edad, el porcentaje de clasificaci&oacute;n decrece a mayor categor&iacute;a de edad (JUV). Las variables que entran en el modelo de an&aacute;lisis multivariante con mayor poder de predicci&oacute;n fueron predominantemente las de condici&oacute;n f&iacute;sica y cineantropom&eacute;tricas. Tan s&oacute;lo apareci&oacute; una variable de los antecedentes deportivos en la categor&iacute;a JUV.Seg&uacute;n los resultados, la mejor edad para la detecci&oacute;n de talentos basada en este tipo de evaluaci&oacute;n multidisciplinar (antecedentes deportivos, cinantropom&eacute;tricos y test de condici&oacute;n f&iacute;sica), son los 15-16 a&ntilde;os (categor&iacute;a CAD), cuando, probablemente, factores coordinativos y cognitivos comienzan a adquirir importancia en el rendimiento en balonmano. Estos resultados pueden ser de ayuda para la detecci&oacute;n de talentos en j&oacute;venes jugadores.<br />PALABRAS CLAVE: an&aacute;lisis multivariante, selecci&oacute;n de talentos y balonmano.</p> <p class="tabulado">&nbsp;</p> <p class="titulo1" align="center"><strong>ABSTRACT</strong></p> <p class="tabulado">The aim of this investigation was to analyse different anthropometrical, physical fitness and training characteristics of young handball players of different age categories from a multidimensional perspective, in order to obtain statistically developed reference norms for various testing procedures, and to build multivariate models that could predict performance level at different age periods (Solanellas &amp; Rodr&iacute;guez 1996). 105 handball players aged 13-18 years participated in the study, selected among the best players of the Galician Handball Federation (Spain). They were grouped into three official age categories: 13-14 (INF), 15-16 (CAD) and 17-18 (JUV). The multidimensional evaluation procedures included: 1) a specific questionnaire to analyse their sport participation background and training status; 2) a complete anthropometrical evaluation, including body composition analysis, somatotyping, and sexual maturation rating; 3) the Eurofit test battery (Council of Europe 1988) to measure general physical fitness; and 4) a vertical jump test battery (SJ, CMJ, and Abalakov). Different multivariate models were developed using discriminant analysis techniques (stepwise selection) to discriminate between players who were selected or not selected to play with the Galician national team by a committee of federal coaches. Wilks&rsquo; &lambda;, F values, canonical correlation, and percentage of correctly classified players, among other parameters, were calculated. The predictive capacity of multivariate models developed by discriminant analysis reached 95% or more of players correctly classified when all variables were included. Variables entering the predictive model using the first discriminant function varied for each age category group, and correct classification percentage significantly decreased at the oldest age category (JUV). The variables entering the multivariate models with highest predictive value were predominantly those derived from physical fitness and anthropometrical tests. Training level appeared only at the oldest age category group. From the results, we conclude that the best age for talent detection based on this type of multidisciplinary evaluation (sports background and training status questionnaire, anthropometry, and physical fitness comprehensive testing) seems to be 15-16 years of age (CAD category), when coordinative and cognitive factors probably begin to play an increasingly important role in handball performance. These results could be particularly helpful in talent detection and development in younger players.<br />KEY WORDS: multivariate analysis, talent detection y handball.</p>