Nanotechnology Reviews (Oct 2024)

Utilizing Ziziphus spina-christi for eco-friendly synthesis of silver nanoparticles: Antimicrobial activity and promising application in wound healing

  • Abdellatif Ahmed A. H.,
  • Mostafa Mahmoud A. H.,
  • Khojah Hani M. J.,
  • Al Haidari Rwaida A.,
  • Tawfeek Hesham M.,
  • Soliman Ghareb M.,
  • Al Thagfan Sultan S.,
  • Faris Tarek M.,
  • Tolba Nahla Sameh

DOI
https://doi.org/10.1515/ntrev-2024-0112
Journal volume & issue
Vol. 13, no. 1
pp. 117588 – 80

Abstract

Read online

Wound healing is a critical process essential for the body’s recovery from injuries, often complicated by bacterial infections. Silver nanoparticles (AgNPs) have gained attention due to their antibacterial and tissue-regenerative properties. However, conventional chemical synthesis methods for AgNPs pose environmental risks. This study utilizes Ziziphus spina-christi (ZSC) extract for the eco-friendly synthesis of AgNPs, evaluating their antibacterial and wound-healing capabilities. The AgNPs-ZSC showed an absorption maximum at λ max of 460 nm, a particle size of 111.2 ± 1.09 nm, a polydispersity index of 0.38 ± 0.006, and a zeta potential of −27.0 ± 0.231 mV. The synthesized AgNPs-ZSC were spherical, non-aggregated, and exhibited potent antibacterial activity superior to chloramphenicol. Furthermore, the AgNPs-ZSC cream significantly promoted wound closure, epithelial tissue proliferation, and granulation tissue formation in rats, showing no signs of toxicity or adverse reactions. In conclusion, AgNPs-ZSC cream demonstrates excellent antibacterial and wound-healing properties, presenting a sustainable alternative to conventional chemical methods for AgNP synthesis.

Keywords