Materials Research Letters (Oct 2018)
Enhanced void swelling in NiCoFeCrPd high-entropy alloy by indentation-induced dislocations
Abstract
The role of dislocations on ion irradiation-induced void formation is studied in a high-entropy alloy (HEA) NiCoFeCrPd. Despite previous observations that show high-entropy alloys are swelling resistant due to a high defect recombination rate, the swelling is enhanced with increasing density of pre-existing dislocations at low strain levels that shortened transient duration before the onset of void swelling. Under certain irradiation conditions, a high density of dislocations may carry the material closer to the sink-dominated regime. Compared to another HEA NiCoFeCrMn, NiCoFeCrPd has a smaller loop size and higher loop density due to the stronger lattice distortion.
Keywords