Biomimetics (Apr 2024)
Dynamic 3D Point-Cloud-Driven Autonomous Hierarchical Path Planning for Quadruped Robots
Abstract
Aiming at effectively generating safe and reliable motion paths for quadruped robots, a hierarchical path planning approach driven by dynamic 3D point clouds is proposed in this article. The developed path planning model is essentially constituted of two layers: a global path planning layer, and a local path planning layer. At the global path planning layer, a new method is proposed for calculating the terrain potential field based on point cloud height segmentation. Variable step size is employed to improve the path smoothness. At the local path planning layer, a real-time prediction method for potential collision areas and a strategy for temporary target point selection are developed. Quadruped robot experiments were carried out in an outdoor complex environment. The experimental results verified that, for global path planning, the smoothness of the path is improved and the complexity of the passing ground is reduced. The effective step size is increased by a maximum of 13.4 times, and the number of iterations is decreased by up to 1/6, compared with the traditional fixed step size planning algorithm. For local path planning, the path length is shortened by 20%, and more efficient dynamic obstacle avoidance and more stable velocity planning are achieved by using the improved dynamic window approach (DWA).
Keywords