Atmosphere (Aug 2024)

Analysis of Precipitable Water Vapor, Liquid Water Path and Their Variations before Rainfall Event over Northeastern Tibetan Plateau

  • Mingxing Xue,
  • Qiong Li,
  • Zhen Qiao,
  • Xiaomei Zhu,
  • Suonam Kealdrup Tysa

DOI
https://doi.org/10.3390/atmos15080934
Journal volume & issue
Vol. 15, no. 8
p. 934

Abstract

Read online

A ground-based microwave radiometer (MWR) provides continuous atmospheric profiles under various weather conditions. The change in total precipitable water vapor (PWV) and liquid water path (LWP) before rainfall events is particularly important for the improvement in the rainfall forecast. However, the analysis of the PWV and LWP before rainfall event on the plateau is especially worth exploring. In this study, the MWR installed at Xining, a city located over the northeastern Tibetan Plateau, was employed during September 2021 to August 2022. The results reveal that the MWR-retrieved temperature and vapor density demonstrate reliable accuracy, when compared with radiosonde observations; PWV and LWP values during the summer account for over 70% of the annual totals in the Xining area; both PWV and LWP at the initiating time of rainfall events are higher during summer, especially after sunset (during 20-00 local solar time); and notably, PWV and LWP anomalies are enhanced abruptly 8 and 28 min prior to the initiating time, respectively. Furthermore, the mean of LWP anomaly rises after the turning time (the moment rises abruptly) to the initiating time; as the intensity of rainfall events increases, the occurrence of the turning time is delayed, especially for PWV anomalies; while the occurrence of the turning time is similar for both convective cloud and stratiform cloud rainfall events, the PWV and LWP anomalies jump more the initiating time; as the intensity of rainfall events increases, the occurrence of the turning time is delayed, especially for PWV anomalies; while the occurrence of the turning time is similar for both convective cloud and stratiform cloud rainfall events, the PWV and LWP anomalies jump more dramatically after the turning time in convective cloud events. This study aims are to analyze the temporal characteristics of PWV and LWP, and assess their potential in predicting rainfall event.

Keywords