Electrochemistry (Sep 2021)

DC-Voltage-Induced High Oxygen Permeation through a Lanthanum Silicate Electrolyte with a Cerium Oxide Thin Film

  • Shingo IDE,
  • Ken WATANABE,
  • Koichi SUEMATSU,
  • Yasuhiro SETO,
  • Isamu YASHIMA,
  • Kengo SHIMANOE

DOI
https://doi.org/10.5796/electrochemistry.21-00057
Journal volume & issue
Vol. 89, no. 5
pp. 427 – 432

Abstract

Read online

An oxide-ion-conductor-based oxygen pumping system can serve as an on-site oxygen separation system. Herein, we present the oxygen permeation capability of a Pt electrode/La-Sm-doped CeO2 (L-SDC) intermediate layer/c-axis-oriented La9.66Si5.3B0.7O26.14 (c-LSBO) solid electrolyte cell. A significant increase in the oxygen permeation flux is observed on applying a DC voltage of ≥4 V at temperatures <600 °C. A remarkably high flux of 5.2 mL cm−2 min−1 is obtained even at 500 °C. Furthermore, in situ X-ray diffraction studies under applied voltages reveal an increase in the lattice constant of L-SDC, accompanied by a drastic increase in the oxygen permeation flux, indicating the reduction of Ce4+ and formation of oxygen vacancies. These results suggest that the observed change in L-SDC under the applied voltage results in the in situ formation of a mixed electron- and oxide-ion-conducting L-SDC electrode, indicating that the oxygen reduction reaction and incorporation is significantly enhanced.

Keywords