Open Mathematics (Aug 2018)
Algebras of right ample semigroups
Abstract
Strict RA semigroups are common generalizations of ample semigroups and inverse semigroups. The aim of this paper is to study algebras of strict RA semigroups. It is proved that any algebra of strict RA semigroups with finite idempotents has a generalized matrix representation whose degree is equal to the number of non-zero regular 𝓓-classes. In particular, it is proved that any algebra of finite right ample semigroups has a generalized upper triangular matrix representation whose degree is equal to the number of non-zero regular 𝓓-classes. As its application, we determine when an algebra of strict RA semigroups (right ample monoids) is semiprimitive. Moreover, we prove that an algebra of strict RA semigroups (right ample monoids) is left self-injective iff it is right self-injective, iff it is Frobenius, and iff the semigroup is a finite inverse semigroup.
Keywords