Scientific Reports (Aug 2018)

Silicon Surface Tethered Polymer as Artificial Solid Electrolyte Interface

  • Brian H. Shen,
  • Gabriel M. Veith,
  • Wyatt E. Tenhaeff

DOI
https://doi.org/10.1038/s41598-018-30000-z
Journal volume & issue
Vol. 8, no. 1
pp. 1 – 11

Abstract

Read online

Abstract We have developed a proof of concept electrode design to covalently graft poly(methyl methacrylate) brushes directly to silicon thin film electrodes via surface-initiated atom transfer radical polymerization. This polymer layer acts as a stable artificial solid electrolyte interface that enables surface passivation despite large volume changes during cycling. Thin polymer layers (75 nm) improve average first cycle coulombic efficiency from 62.4% in bare silicon electrodes to 76.3%. Average first cycle reversible capacity was improved from 3157 to 3935 mAh g−1, and average irreversible capacity was reduced from 2011 to 1020 mAh g−1. Electrochemical impedance spectroscopy performed on silicon electrodes showed that resistance from solid electrolyte interface formation increased from 79 to 1508 Ω in untreated silicon thin films over 26 cycles, while resistance growth was lower – from 98 to 498 Ω – in silicon films functionalized with PMMA brushes. The lower increase suggests enhanced surface passivation and lower electrolyte degradation. This work provides a pathway to develop artificial solid electrolyte interfaces synthesized under controlled reaction conditions.