PLoS ONE (Jan 2017)

A hypoxia response element in the Vegfa promoter is required for basal Vegfa expression in skin and for optimal granulation tissue formation during wound healing in mice.

  • Domenic Ciarlillo,
  • Christophe Celeste,
  • Peter Carmeliet,
  • Derek Boerboom,
  • Christine Theoret

DOI
https://doi.org/10.1371/journal.pone.0180586
Journal volume & issue
Vol. 12, no. 7
p. e0180586

Abstract

Read online

Hypoxia in skin wounds is thought to contribute to healing through the induction of hypoxia inducible factor-1 (HIF-1). Although HIF-1 can regulate the expression of vascular endothelial growth factor A (Vegfa), whether hypoxia and HIF-1 are required to induce Vegfa expression in the context of wound healing is unknown. To test this hypothesis, we evaluated Vegfa expression and wound healing in mutant mice that lack a functional HIF-1 binding site in the Vegfa promoter. Full-thickness excisional wounds were made using a biopsy punch, left to heal by second intention, and granulation tissue isolated on a time course during healing. mRNA levels of Vegfa and its target genes platelet-derived growth factors B (Pdgfb) and stromal cell-derived factor-1 (Sdf1) were measured by RT-qPCR, and HIF-1alpha and VEGFA protein levels measured by immunoblotting. Lower levels of Vegfa, Pdgf1 and Sdf1 mRNA were found in intact skin of mutant mice relative to wild-type controls (n = 6 mice/genotype), whereas levels in granulation tissue during wound healing were unaltered. VEGFA protein levels were also lower in intact skin of the mutant versus the wild-type mice. Decreased Vegfa mRNA levels in skin of mutant mice could not be attributed to decreased HIF-1alpha protein expression, and were therefore a consequence of the loss of HIF-1 responsiveness of the Vegfa promoter. Comparative histologic analyses of healing wounds in mutant and wild-type mice (n = 8 mice/genotype) revealed significant defects in granulation tissue in the mutant mice, both in terms of quantity and capillary density, although epithelialization and healing rates were unaltered. We conclude that HIF-1 is not a major regulator of Vegfa expression during wound healing; rather, it serves to maintain basal levels of expression of Vegfa and its target genes in intact skin, which are required for optimal granulation tissue formation in response to wounding.