The Cryosphere (Sep 2020)
ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century
- H. Seroussi,
- S. Nowicki,
- A. J. Payne,
- H. Goelzer,
- H. Goelzer,
- W. H. Lipscomb,
- A. Abe-Ouchi,
- C. Agosta,
- T. Albrecht,
- X. Asay-Davis,
- A. Barthel,
- R. Calov,
- R. Cullather,
- C. Dumas,
- B. K. Galton-Fenzi,
- R. Gladstone,
- N. R. Golledge,
- J. M. Gregory,
- J. M. Gregory,
- R. Greve,
- R. Greve,
- T. Hattermann,
- T. Hattermann,
- M. J. Hoffman,
- A. Humbert,
- A. Humbert,
- P. Huybrechts,
- N. C. Jourdain,
- T. Kleiner,
- E. Larour,
- G. R. Leguy,
- D. P. Lowry,
- C. M. Little,
- M. Morlighem,
- F. Pattyn,
- T. Pelle,
- S. F. Price,
- A. Quiquet,
- R. Reese,
- N.-J. Schlegel,
- A. Shepherd,
- E. Simon,
- R. S. Smith,
- F. Straneo,
- S. Sun,
- L. D. Trusel,
- J. Van Breedam,
- R. S. W. van de Wal,
- R. S. W. van de Wal,
- R. Winkelmann,
- R. Winkelmann,
- C. Zhao,
- T. Zhang,
- T. Zwinger
Affiliations
- H. Seroussi
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
- S. Nowicki
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
- A. J. Payne
- University of Bristol, Bristol, UK
- H. Goelzer
- Institute for Marine and Atmospheric research Utrecht, Utrecht University, Utrecht, the Netherlands
- H. Goelzer
- Laboratoire de Glaciologie, Université Libre de Bruxelles, Brussels, Belgium
- W. H. Lipscomb
- Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
- A. Abe-Ouchi
- University of Tokyo, Tokyo, Japan
- C. Agosta
- Laboratoire des sciences du climat et de l'environnement, LSCE-IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
- T. Albrecht
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P.O. Box 601203, 14412 Potsdam, Germany
- X. Asay-Davis
- Theoretical Division, Los Alamos National Laboratory, Los Alamos,, NM, USA
- A. Barthel
- Theoretical Division, Los Alamos National Laboratory, Los Alamos,, NM, USA
- R. Calov
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P.O. Box 601203, 14412 Potsdam, Germany
- R. Cullather
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
- C. Dumas
- Laboratoire des sciences du climat et de l'environnement, LSCE-IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
- B. K. Galton-Fenzi
- Australian Antarctic Division, Kingston, Tasmania, Australia
- R. Gladstone
- Arctic Centre, University of Lapland, Rovaniemi, Finland
- N. R. Golledge
- Antarctic Research Centre, Victoria University of Wellington, Wellington, New Zealand
- J. M. Gregory
- National Centre for Atmospheric Science, University of Reading, Reading, UK
- J. M. Gregory
- Met Office Hadley Centre, Exeter, UK
- R. Greve
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
- R. Greve
- Arctic Research Center, Hokkaido University, Sapporo, Japan
- T. Hattermann
- Norwegian Polar Institute, Tromsø, Norway
- T. Hattermann
- Energy and Climate Group, Department of Physics and Technology, The Arctic University – University of Tromsø, Tromsø, Norway
- M. J. Hoffman
- Theoretical Division, Los Alamos National Laboratory, Los Alamos,, NM, USA
- A. Humbert
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
- A. Humbert
- Department of Geoscience, University of Bremen, Klagenfurter Straße 2-4, 28334 Bremen, Germany
- P. Huybrechts
- Earth System Science and Departement Geografie, Vrije Universiteit Brussel, Brussels, Belgium
- N. C. Jourdain
- Univ. Grenoble Alpes/CNRS/IRD/G-INP, Institut des Géosciences de l'Environnement, Grenoble, France
- T. Kleiner
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
- E. Larour
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
- G. R. Leguy
- Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
- D. P. Lowry
- GNS Science, Lower Hutt, New Zealand
- C. M. Little
- Atmospheric and Environmental Research, Inc., Lexington, MA, USA
- M. Morlighem
- Department of Earth System Science, University of California Irvine, Irvine, CA, USA
- F. Pattyn
- Laboratoire de Glaciologie, Université Libre de Bruxelles, Brussels, Belgium
- T. Pelle
- Department of Earth System Science, University of California Irvine, Irvine, CA, USA
- S. F. Price
- Theoretical Division, Los Alamos National Laboratory, Los Alamos,, NM, USA
- A. Quiquet
- Laboratoire des sciences du climat et de l'environnement, LSCE-IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
- R. Reese
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P.O. Box 601203, 14412 Potsdam, Germany
- N.-J. Schlegel
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
- A. Shepherd
- Centre for Polar Observation and Modelling, University of Leeds, Leeds, UK
- E. Simon
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
- R. S. Smith
- National Centre for Atmospheric Science, University of Reading, Reading, UK
- F. Straneo
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- S. Sun
- Laboratoire de Glaciologie, Université Libre de Bruxelles, Brussels, Belgium
- L. D. Trusel
- Department of Geography, Pennsylvania State University, University Park, PA, USA
- J. Van Breedam
- Earth System Science and Departement Geografie, Vrije Universiteit Brussel, Brussels, Belgium
- R. S. W. van de Wal
- Institute for Marine and Atmospheric research Utrecht, Utrecht University, Utrecht, the Netherlands
- R. S. W. van de Wal
- Geosciences, Physical Geography, Utrecht University, Utrecht, the Netherlands
- R. Winkelmann
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P.O. Box 601203, 14412 Potsdam, Germany
- R. Winkelmann
- University of Potsdam, Institute of Physics and Astronomy, Karl-Liebknecht-Str. 24–25, 14476 Potsdam, Germany
- C. Zhao
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
- T. Zhang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos,, NM, USA
- T. Zwinger
- CSC-IT Center for Science, Espoo, Finland
- DOI
- https://doi.org/10.5194/tc-14-3033-2020
- Journal volume & issue
-
Vol. 14
pp. 3033 – 3070
Abstract
Ice flow models of the Antarctic ice sheet are commonly used to simulate its future evolution in response to different climate scenarios and assess the mass loss that would contribute to future sea level rise. However, there is currently no consensus on estimates of the future mass balance of the ice sheet, primarily because of differences in the representation of physical processes, forcings employed and initial states of ice sheet models. This study presents results from ice flow model simulations from 13 international groups focusing on the evolution of the Antarctic ice sheet during the period 2015–2100 as part of the Ice Sheet Model Intercomparison for CMIP6 (ISMIP6). They are forced with outputs from a subset of models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), representative of the spread in climate model results. Simulations of the Antarctic ice sheet contribution to sea level rise in response to increased warming during this period varies between −7.8 and 30.0 cm of sea level equivalent (SLE) under Representative Concentration Pathway (RCP) 8.5 scenario forcing. These numbers are relative to a control experiment with constant climate conditions and should therefore be added to the mass loss contribution under climate conditions similar to present-day conditions over the same period. The simulated evolution of the West Antarctic ice sheet varies widely among models, with an overall mass loss, up to 18.0 cm SLE, in response to changes in oceanic conditions. East Antarctica mass change varies between −6.1 and 8.3 cm SLE in the simulations, with a significant increase in surface mass balance outweighing the increased ice discharge under most RCP 8.5 scenario forcings. The inclusion of ice shelf collapse, here assumed to be caused by large amounts of liquid water ponding at the surface of ice shelves, yields an additional simulated mass loss of 28 mm compared to simulations without ice shelf collapse. The largest sources of uncertainty come from the climate forcing, the ocean-induced melt rates, the calibration of these melt rates based on oceanic conditions taken outside of ice shelf cavities and the ice sheet dynamic response to these oceanic changes. Results under RCP 2.6 scenario based on two CMIP5 climate models show an additional mass loss of 0 and 3 cm of SLE on average compared to simulations done under present-day conditions for the two CMIP5 forcings used and display limited mass gain in East Antarctica.