Boundary Value Problems (Jun 2018)
Multiple positive solutions for nonlinear coupled fractional Laplacian system with critical exponent
Abstract
Abstract In this paper, we study the following critical system with fractional Laplacian: {(−Δ)su+λ1u=μ1|u|2∗−2u+αγ2∗|u|α−2u|v|βin Ω,(−Δ)sv+λ2v=μ2|v|2∗−2v+βγ2∗|u|α|v|β−2vin Ω,u=v=0in RN∖Ω, $$\textstyle\begin{cases} (-\Delta)^{s}u+\lambda_{1}u=\mu_{1}|u|^{2^{\ast}-2}u+\frac{\alpha \gamma}{2^{\ast}}|u|^{\alpha-2}u|v|^{\beta} & \text{in } \Omega, \\ (-\Delta)^{s}v+\lambda_{2}v= \mu_{2}|v|^{2^{\ast}-2}v+\frac{\beta \gamma}{2^{\ast}}|u|^{\alpha}|v|^{\beta-2}v & \text{in } \Omega, \\ u=v=0 & \text{in } \mathbb{R}^{N}\setminus\Omega, \end{cases} $$ where (−Δ)s $(-\Delta)^{s}$ is the fractional Laplacian, 00 $\mu_{1},\mu_{2}>0$, 2∗=2NN−2s $2^{\ast}=\frac{2N}{N-2s}$ is a fractional critical Sobolev exponent, N>2s $N>2s$, 1−λ1,s(Ω) $\lambda_{1},\lambda_{2}>-\lambda_{1,s}(\Omega)$, λ1,s(Ω) $\lambda_{1,s}(\Omega)$ is the first eigenvalue of the non-local operator (−Δ)s $(-\Delta)^{s}$ with homogeneous Dirichlet boundary datum. By using the Nehari manifold, we prove the existence of a positive ground state solution of the system for all γ>0 $\gamma>0$. Via a perturbation argument and using the topological degree and a pseudo-gradient vector field, we show that this system has a positive higher energy solution. Then the asymptotic behaviors of the positive ground state solutions are analyzed when γ→0 $\gamma\rightarrow0$.
Keywords