Applied Sciences (Dec 2021)

Biomechanical Effects on Lower Extremities in Human-Robot Collaborative Agricultural Tasks

  • Lefteris Benos,
  • Christos Kokkotis,
  • Themistoklis Tsatalas,
  • Evangeli Karampina,
  • Dimitrios Tsaopoulos,
  • Dionysis Bochtis

DOI
https://doi.org/10.3390/app112411742
Journal volume & issue
Vol. 11, no. 24
p. 11742

Abstract

Read online

The present study pertains to a key aspect of human-robot collaborative systems which is usually underestimated, namely occupational health prolepsis. The aim of this investigation was to assess the biomechanical effects of manual symmetric load lifting related to a synergistic agricultural task that utilizes an unmanned ground vehicle to undertake the carriage of loads. Towards that goal, kinetic and kinematic data were collected from the lower extremities of thirteen experienced workers, by testing three different deposit heights (70, 80, 90 cm) corresponding to possible adjustments of the available agricultural robot. Moreover, the muscle activation levels of three lower extremity muscles and one trunk muscle were evaluated via a wireless electromyography system. Overall, the experimental findings revealed that the lower examined load height was associated with larger knee flexion moments and hip extension moments. Nevertheless, this height was related to lower activation mainly of the erectus spinae muscles. Finally, insignificant alterations were observed for the ankle joint as well as the activation levels of the other muscles. Consequently, a height equal to 90 cm is suggested, however, by avoiding extreme lumbar postures. The current results can be exploited for possible ergonomic interventions concerning the optimal deposit height of a robotic platform when a similar case is designed.

Keywords