Cell Reports (Jul 2023)

Early developmental deletion of forebrain Ank2 causes seizure-related phenotypes by reshaping the synaptic proteome

  • Sehyoun Yoon,
  • Marc Dos Santos,
  • Marc P. Forrest,
  • Christopher P. Pratt,
  • Natalia Khalatyan,
  • Peter J. Mohler,
  • Jeffrey N. Savas,
  • Peter Penzes

Journal volume & issue
Vol. 42, no. 7
p. 112784

Abstract

Read online

Summary: Rare genetic variants in ANK2, which encodes ankyrin-B, are associated with neurodevelopmental disorders (NDDs); however, their pathogenesis is poorly understood. We find that mice with prenatal deletion in cortical excitatory neurons and oligodendrocytes (Ank2−/−:Emx1-Cre), but not with adolescent deletion in forebrain excitatory neurons (Ank2−/−:CaMKIIα-Cre), display severe spontaneous seizures, increased mortality, hyperactivity, and social deficits. Calcium imaging of cortical slices from Ank2−/−:Emx1-Cre mice shows increased neuronal calcium event amplitude and frequency, along with network hyperexcitability and hypersynchrony. Quantitative proteomic analysis of cortical synaptic membranes reveals upregulation of dendritic spine plasticity-regulatory proteins and downregulation of intermediate filaments. Characterization of the ankyrin-B interactome identifies interactors associated with autism and epilepsy risk factors and synaptic proteins. The AMPA receptor antagonist, perampanel, restores cortical neuronal activity and partially rescues survival in Ank2−/−:Emx1-Cre mice. Our findings suggest that synaptic proteome alterations resulting from Ank2 deletion impair neuronal activity and synchrony, leading to NDDs-related behavioral impairments.

Keywords