PeerJ Computer Science (Jul 2022)

High-dimensional normalized data profiles for testing derivative-free optimization algorithms

  • Hassan Musafer,
  • Emre Tokgoz,
  • Ausif Mahmood

DOI
https://doi.org/10.7717/peerj-cs.960
Journal volume & issue
Vol. 8
p. e960

Abstract

Read online Read online

This article provides a new tool for examining the efficiency and robustness of derivative-free optimization algorithms based on high-dimensional normalized data profiles that test a variety of performance metrics. Unlike the traditional data profiles that examine a single dimension, the proposed data profiles require several dimensions in order to analyze the relative performance of different optimization solutions. To design a use case, we utilize five sequences (solvers) of trigonometric simplex designs that extract different features of non-isometric reflections, as an example to show how various metrics (dimensions) are essential to provide a comprehensive evaluation about a particular solver relative to others. In addition, each designed sequence can rotate the starting simplex through an angle to designate the direction of the simplex. This type of features extraction is applied to each sequence of the triangular simplexes to determine a global minimum for a mathematical problem. To allocate an optimal sequence of trigonometric simplex designs, a linear model is used with the proposed data profiles to examine the convergence rate of the five simplexes. Furthermore, we compare the proposed five simplexes to an optimized version of the Nelder–Mead algorithm known as the Genetic Nelder–Mead algorithm. The experimental results demonstrate that the proposed data profiles lead to a better examination of the reliability and robustness for the considered solvers from a more comprehensive perspective than the existing data profiles. Finally, the high-dimensional data profiles reveal that the proposed solvers outperform the genetic solvers for all accuracy tests.

Keywords