Archives of Endocrinology and Metabolism (May 2023)
Ghrelin and glucagon-like peptide-1 according to body adiposity and glucose homeostasis
Abstract
ABSTRACT Objective: We investigated the biological behavior of ghrelin and glucagon-like peptide-1 (GLP-1) after a standard liquid meal according to body adiposity and glucose homeostasis. Subjects and methods: This cross-sectional study included 41 individuals (92.7% women; aged 38.3 ± 7.8 years; BMI 32.2 ± 5.5 kg/m²) allocated into three groups according to body adiposity and glucose homeostasis, as follows: normoglycemic eutrophic controls (CON, n = 11), normoglycemic with obesity (NOB, n = 15), and dysglycemic with obesity (DOB, n = 15). They were tested at fasting and 30 and 60 min after the ingestion of a standard liquid meal in which we measured active ghrelin, active GLP-1, insulin, and plasma glucose levels. Results: As expected, DOB exhibited the worst metabolic status (glucose, insulin, HOMA-IR, HbA1c) and an inflammatory status (TNF-α) at fasting, besides a more significant increase in glucose than postprandial NOB (p ≤ 0.05). At fasting, no differences between groups were detected in lipid profile, ghrelin, and GLP-1 (p ≥ 0.06). After the standard meal, all groups exhibited a reduction in ghrelin levels between fasting vs. 60 min (p ≤ 0.02). Additionally, we noticed that GLP-1 and insulin increased equally in all groups after the standard meal (fasting vs. 30 and 60 min). Although glucose levels increased in all groups after meal intake, these changes were significantly more significant in DOB vs. CON and NOB at 30 and 60 min post-meal (p ≤ 0.05). Conclusions: Time course of ghrelin and GLP-1 levels during the postprandial period was not influenced by body adiposity or glucose homeostasis. Similar behaviors occurred in controls and patients with obesity, independently of glucose homeostasis.
Keywords