Журнал органічної та фармацевтичної хімії (Feb 2019)
The quantum chemical study of the mechanism of the epoxidation reaction of limonene and geraniol with peracetic and perbenzoic acids
Abstract
Aim. To compare the mechanism of the epoxidation reaction of terpenes Geraniol and Limonene with peracetic acid and perbenzoic acid based on the quantum chemical study. Materials and methods. For the calculation the density functional theory (approximation UBH & HLYP/6-31G (d) Gaussian 09) method was applied. The specified density functional allows to correctly describing biradical structures; it is rather economic in terms of the computer time cost, which allows its use in the study of sufficiently complex organic compounds and reactions. Results and discussion. The quantum chemical study of mechanisms of the epoxidation reaction of such terpenes as Geraniol and Limonene with peracetic and perbenzonic acids using the density functional theory (approximation UBH & HLYP/6-31G (d) Gaussian 09 program) has been conducted. It has been shown that epoxidation of geraniol with both peroxyacids occurs preferably by the double bond C6=C7 due to stabilization of the corresponding transition state as a result of formation of hydrogen bond between the allyl hydroxyl group and the oxygen atom of the peroxy acid. Epoxidation of Limonene with perbenzoic and peracetic acids occurs via the cyclic double bond characterized by the lowest activation barrier, and it is consistent with the regioselectivity of the process generally known and experimentally proven. Conclusions. The results obtained are consistent with the experimental data, confirming the correctness of the use of this UBH & HLYP/6-31G (d) approach to study the regiochemical pecularities of the epoxidation process of alkenes containing several isolated double bonds.
Keywords