Remote Sensing (Oct 2021)

Spatial and Temporal Distribution of Geologic Hazards in Shaanxi Province

  • Shizhengxiong Liang,
  • Dong Chen,
  • Donghuan Li,
  • Youcun Qi,
  • Zhanfeng Zhao

DOI
https://doi.org/10.3390/rs13214259
Journal volume & issue
Vol. 13, no. 21
p. 4259

Abstract

Read online

The spatio-temporal distribution of geological hazards, including collapses, landslides, and debris flows, in Shaanxi province, China was studied based on data from 1951 to 2018. The potential impact factors, including the geomorphologic types, rivers, roads, rainfall, and earthquakes, were analyzed using Random Forests. The results indicated that most hazards occurred in summer (i.e., July–September) and were triggered by rainstorms. The freeze–thaw effect had a considerable contribution to hazards in the north. Spatially, most hazards in the north occurred in valley terraces of the Loess Plateau, while medium-relief terrane (relief ranged from 500 to 1000 m) in the southern Qinling Mountains were hazard-prone areas. The collapses and landslides were mainly affected by human factors in Northern Shaanxi, whereas in Southern Shaanxi geomorphology was the primary factor. Permeability was a dominant factor for debris flows. In addition, the 2008 Wenchuan earthquake had a remarkable influence on the spatial distribution of hazards. In contrast, for the situation in the Sichuan province, which was close to the earthquake epicenter, the Wenchuan earthquake triggered many collapse and landslide events in the southwest regions of Shaanxi province only on 12 May 2008. The thresholds for the three hazard types in the north and south regions were almost the same despite their distinctly different geologic characteristics. Through a sensitivity analysis, we found an appropriate dry period of 12 h for the area.

Keywords