Batteries (Apr 2023)

Experimental Investigation on Reversible Swelling Mechanisms of Lithium-Ion Batteries under a Varying Preload Force

  • Emanuele Michelini,
  • Patrick Höschele,
  • Simon Franz Heindl,
  • Simon Erker,
  • Christian Ellersdorfer

DOI
https://doi.org/10.3390/batteries9040218
Journal volume & issue
Vol. 9, no. 4
p. 218

Abstract

Read online

The safety of lithium-ion batteries has to be guaranteed over the complete lifetime considering geometry changes caused by reversible and irreversible swellings and degradation mechanisms. An understanding of the pressure distribution and gradients is necessary to optimize battery modules and avoid local degradation bearing the risk of safety-relevant battery changes. In this study, the pressure distribution of two fresh lithium-ion pouch cells was measured with an initial preload force of 300 or 4000 N. Four identical cells were electrochemically aged with a 300 or 4000 N preload force. The irreversible thickness change was measured during aging. After aging, the reversible swelling behavior was investigated to draw conclusions on how the pressure distribution affected the aging behavior. A novel test setup was developed to measure the local cell thickness without contact and with high precision. The results suggested that the applied preload force affected the pressure distribution and pressure gradients on the cell surface. The pressure gradients were found to affect the locality of the irreversible swelling. Positions suffering from large pressure variations and gradients increased strongly in thickness and were affected in terms of their reversible swelling behavior. In particular, the edges of the investigated cells showed a strong thickness increase caused by pressure peaks.

Keywords