Forests (Nov 2021)

Nondestructive Testing of Mechanical Properties of Bamboo–Wood Composite Container Floor by Image Processing

  • Zhilin Jiang,
  • Yi Liang,
  • Zihua Su,
  • Aonan Chen,
  • Jianping Sun

DOI
https://doi.org/10.3390/f12111535
Journal volume & issue
Vol. 12, no. 11
p. 1535

Abstract

Read online

The bamboo–wood composite container floor (BWCCF) has been wildly utilized in transportation in recent years. However, most of the common approaches of mechanics detection are conducted in a time-consuming and resource wasting way. Therefore, this paper aims to provide a frugal and highly efficient method to predict the short-span shear stress, the modulus of rupture (MOR) and the modulus of elasticity (MOE) of the BWCCF. Artificial neural network (ANN) models were developed and support vector machine (SVM) models were constructed for comparative study by taking the characteristic parameters of image processing as input and the mechanical properties as output. The results show that the SVM models can output better values than the ANN models. In a prediction of the three mechanical properties by SVMs, the correlation coefficients (R) were determined as 0.899, 0.926, and 0.949, and the mean absolute percentage errors (MAPE) were obtained, 6.983%, 5.873%, and 4.474%, respectively. The performance measures show the strong generalization of the SVM models. The discoveries in this work provide new perspectives on the study of mechanical properties of the BWCCF combining machine learning and image processing.

Keywords