Active control of polariton-enabled long-range energy transfer
Cargioli Alessio,
Lednev Maksim,
Lavista Lorenzo,
Camposeo Andrea,
Sassella Adele,
Pisignano Dario,
Tredicucci Alessandro,
Garcia-Vidal Francisco J.,
Feist Johannes,
Persano Luana
Affiliations
Cargioli Alessio
Dipartimento di Fisica “E. Fermi”, Università di Pisa, Largo B. Pontecorvo 3, I-56127Pisa, Italy
Lednev Maksim
Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049Madrid, Spain
Lavista Lorenzo
Dipartimento di Fisica “E. Fermi”, Università di Pisa, Largo B. Pontecorvo 3, I-56127Pisa, Italy
Camposeo Andrea
NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127Pisa, Italy
Sassella Adele
Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca, Via Roberto Cozzi 55, I-20125Milano, Italy
Pisignano Dario
Dipartimento di Fisica “E. Fermi” and Center for Instrument Sharing (CISUP), Università di Pisa, Largo B. Pontecorvo 3, I-56127Pisa, Italy
Tredicucci Alessandro
Dipartimento di Fisica “E. Fermi” and Center for Instrument Sharing (CISUP), Università di Pisa, Largo B. Pontecorvo 3, I-56127Pisa, Italy
Garcia-Vidal Francisco J.
Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049Madrid, Spain
Feist Johannes
Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049Madrid, Spain
Persano Luana
NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127Pisa, Italy
Optical control is achieved on the excited state energy transfer between spatially separated donor and acceptor molecules, both coupled to the same optical mode of a cavity. The energy transfer occurs through the formed hybrid polaritons and can be switched on and off by means of ultraviolet and visible light. The control mechanism relies on a photochromic component used as donor, whose absorption and emission properties can be varied reversibly through light irradiation, whereas in-cavity hybridization with acceptors through polariton states enables a 6-fold enhancement of acceptor/donor contribution to the emission intensity with respect to a reference multilayer. These results pave the way for synthesizing effective gating systems for the transport of energy by light, relevant for light-harvesting and light-emitting devices, and for photovoltaic cells.