Energies (Nov 2022)

Effect of Hydrogen Enhancement on Natural Flame Luminosity of Tri-Fuel Combustion in an Optical Engine

  • Qiang Cheng,
  • Zeeshan Ahmad,
  • Ossi Kaario,
  • Ville Vuorinen,
  • Martti Larmi

DOI
https://doi.org/10.3390/en15239080
Journal volume & issue
Vol. 15, no. 23
p. 9080

Abstract

Read online

A novel combustion mode, namely tri-fuel (TF) combustion using a diesel pilot to ignite the premixed methane–hydrogen–air (CH4–H2–air) mixtures, was experimentally investigated under various H2 fractions (0%, 10%, 20%, 40%, 60%) and ultra-lean conditions (equivalence ratio of φ= 0.5). The overarching objective is to evaluate the effect of H2 fraction on flame characteristics and engine performance. To visualize the effect of H2 fraction on the combustion process and flame characteristics, a high-speed color camera (Photron SA-Z) was employed for natural flame luminosity (NFL) imaging to visualize the instantaneous TF combustion process. The engine performance, flame characteristics, and flame stability are characterized based on cylinder pressure and color natural flame images. Both pressure-based and optical imaging-based analyses indicate that adding H2 into the CH4–air mixture can dramatically improve engine performance, such as combustion efficiency, flame speed, and flame stability. The visualization results of NFL show that the addition of H2 promotes the high-temperature reaction, which exhibits a brighter bluish flame during the start of combustion and main combustion, however, a brighter orangish flame during the end of combustion. Since the combustion is ultra-lean, increasing the H2 concentration in the CH4–air mixture dramatically improves the flame propagation, which might reduce the CH4 slip. However, higher H2 concentration in the CH4–air mixture might lead to a high-temperature reaction that sequentially promotes soot emissions, which emit a bright yellowish flame.

Keywords