eLife (Nov 2015)

ATP hydrolysis by the viral RNA sensor RIG-I prevents unintentional recognition of self-RNA

  • Charlotte Lässig,
  • Sarah Matheisl,
  • Konstantin MJ Sparrer,
  • Carina C de Oliveira Mann,
  • Manuela Moldt,
  • Jenish R Patel,
  • Marion Goldeck,
  • Gunther Hartmann,
  • Adolfo García-Sastre,
  • Veit Hornung,
  • Karl-Klaus Conzelmann,
  • Roland Beckmann,
  • Karl-Peter Hopfner

DOI
https://doi.org/10.7554/eLife.10859
Journal volume & issue
Vol. 4

Abstract

Read online

The cytosolic antiviral innate immune sensor RIG-I distinguishes 5′ tri- or diphosphate containing viral double-stranded (ds) RNA from self-RNA by an incompletely understood mechanism that involves ATP hydrolysis by RIG-I's RNA translocase domain. Recently discovered mutations in ATPase motifs can lead to the multi-system disorder Singleton-Merten Syndrome (SMS) and increased interferon levels, suggesting misregulated signaling by RIG-I. Here we report that SMS mutations phenocopy a mutation that allows ATP binding but prevents hydrolysis. ATPase deficient RIG-I constitutively signals through endogenous RNA and co-purifies with self-RNA even from virus infected cells. Biochemical studies and cryo-electron microscopy identify a 60S ribosomal expansion segment as a dominant self-RNA that is stably bound by ATPase deficient RIG-I. ATP hydrolysis displaces wild-type RIG-I from this self-RNA but not from 5' triphosphate dsRNA. Our results indicate that ATP-hydrolysis prevents recognition of self-RNA and suggest that SMS mutations lead to unintentional signaling through prolonged RNA binding.

Keywords