International Journal of Mathematics and Mathematical Sciences (Jan 2019)
An Extension of Totohasina’s Normalization Theory of Quality Measures of Association Rules
Abstract
In the context of binary data mining, for unifying view on probabilistic quality measures of association rules, Totohasina’s theory of normalization of quality measures of association rules primarily based on affine homeomorphism presents some drawbacks. Indeed, it cannot normalize some interestingness measures which are explained below. This paper presents an extension of it, as a new normalization method based on proper homographic homeomorphism that appears most consequent.