Nature Communications (Apr 2022)

Leveraging omic features with F3UTER enables identification of unannotated 3’UTRs for synaptic genes

  • Siddharth Sethi,
  • David Zhang,
  • Sebastian Guelfi,
  • Zhongbo Chen,
  • Sonia Garcia-Ruiz,
  • Emmanuel O. Olagbaju,
  • Mina Ryten,
  • Harpreet Saini,
  • Juan A. Botia

DOI
https://doi.org/10.1038/s41467-022-30017-z
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 15

Abstract

Read online

3’ untranslated regions (3’UTRs) play a crucial role in regulating gene expression, but our 3’UTR catalogue is incomplete. Here, the authors develop a machine learning-based framework to predict previously unannotated 3’UTRs in 39 human tissues.