Materials (Oct 2022)

The Impact Resistance and Mechanical Properties of Recycled Aggregate Concrete with Hooked-End and Crimped Steel Fiber

  • Xiangqing Kong,
  • Yanbin Yao,
  • Bojian Wu,
  • Wenjiao Zhang,
  • Wenchang He,
  • Ying Fu

DOI
https://doi.org/10.3390/ma15197029
Journal volume & issue
Vol. 15, no. 19
p. 7029

Abstract

Read online

The utilization of recycled coarse aggregate (RCA) from construction and demolition waste (CDW) is a sustainable solution to protect the fragile natural environment and save the diminishing natural resources. The current study was aimed at exploring the impact resistance and mechanical properties of recycled aggregate concrete (RAC) affected by hooked-end steel fiber (HF) and crimped steel fiber (CF). Fifteen concrete mixtures considering different RCA substitution ratio, steel fiber dosage, and steel fiber shapes were designed. Meanwhile, a statistical analysis method-based Weibull distribution was introduced to evaluate the variations of impact test results, presented using a reliability function. Lastly, the microstructural morphologies of interfacial transition zones at the cement paste/aggregate and cement paste/fiber interfaces were observed using a scanning electron microscope (SEM). The experimental results showed that the impact resistance and mechanical properties mildly decreased with the increase in substitution ratio of RCA, whereas they conclusively increased with the increase in steel fiber content. Steel fiber recycled aggregate concrete (SFRAC) with 1.5% steel fiber content had the best impact resistance, and its initial cracking times and final failure times were 3.25–4.75 and 8.78–29.08 times those of plain RAC, respectively. HF has better impact resistance than CF. The SEM observations of microstructures indicated that the hardened cement paste of natural aggregate concrete (NAC) was more compact than that of RAC. Steel fiber had a better connection with the cement paste interface than that of aggregate and cement paste owing to better thermal conductivity. This research could be a guide for SFRAC as a structural material in practical engineering, steering the construction industry toward the circular economy.

Keywords