Frontiers in Plant Science (Dec 2021)

Understanding G × E Interaction for Nutritional and Antinutritional Factors in a Diverse Panel of Vigna stipulacea (Lam.) Kuntz Germplasm Tested Over the Locations

  • Padmavati G. Gore,
  • Padmavati G. Gore,
  • Arpita Das,
  • Rakesh Bhardwaj,
  • Kuldeep Tripathi,
  • Aditya Pratap,
  • Harsh K. Dikshit,
  • Sudip Bhattacharya,
  • Ramakrishnan M. Nair,
  • Veena Gupta

DOI
https://doi.org/10.3389/fpls.2021.766645
Journal volume & issue
Vol. 12

Abstract

Read online

Micronutrient malnutrition or hidden hunger is a serious challenge toward societal well-being. Vigna stipulacea (Lam.) Kuntz (known locally as Minni payaru), is an underutilized legume that has the potential to be a global food legume due to its rich nutrient profile. In the present study, 99 accessions of V. stipulacea were tested for iron (Fe), zinc (Zn), calcium (Ca), protein, and phytate concentrations over two locations for appraisal of stable nutrient-rich sources. Analysis of variance revealed significant effects of genotype for all the traits over both locations. Fe concentration ranged from 29.35–130.96 mg kg–1 whereas Zn concentration ranged from 19.44 to 74.20 mg kg–1 across both locations. The highest grain Ca concentration was 251.50 mg kg–1 whereas the highest grain protein concentration was recorded as 25.73%. In the case of grain phytate concentration, a genotype with the lowest value is desirable. IC622867 (G-99) was the lowest phytate containing accession at both locations. All the studied traits revealed highly significant genotypic variances and highly significant genotype × location interaction though less in magnitude than the genotypic variance. GGE Biplot analysis detected that, for grain Fe, Zn, and Ca concentration the ‘ideal’ genotypes were IC331457 (G-75), IC331610 (G-76), and IC553564 (G-60), respectively, whereas for grain protein concentration IC553521 (G-27) was the most “ideal type.” For phytate concentration, IC351407 (G-95) and IC550523 (G-99) were considered as ‘ideal’ and ‘desirable,’ respectively. Based on the desirability index, Location 1 (Kanpur) was identified as ideal for Fe, Zn, Ca, and phytate, and for grain protein concentration, Location 2 (New Delhi) was the ideal type. A significant positive correlation was detected between grain Fe as well as grain Zn and protein concentration considering the pooled analysis over both the locations where as a significant negative association was observed between phytate and protein concentration over the locations. This study has identified useful donors and enhanced our knowledge toward the development of biofortified Vigna cultivars. Promoting domestication of this nutrient-rich semi-domesticated, underutilized species will boost sustainable agriculture and will contribute toward alleviating hidden hunger.

Keywords