BMC Biology (Sep 2022)

A stem group Codium alga from the latest Ediacaran of South China provides taxonomic insight into the early diversification of the plant kingdom

  • Shu Chai,
  • Cédric Aria,
  • Hong Hua

DOI
https://doi.org/10.1186/s12915-022-01394-0
Journal volume & issue
Vol. 20, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Background In recent years, Precambrian lifeforms have generated an ever-increasing interest because they revealed a rich eukaryotic diversity prior to the Cambrian explosion of modern animals. Among them, macroalgae are known to be a conspicuous component of Neoproterozoic ecosystems, and chlorophytes in particular are already documented in the Tonian, when they were so far expected to originate. However, like for other major eukaryotic lineages, and despite predictions of molecular clock analyses placing roots of these lineages well into the Neoproterozoic, a taxonomic constraint on Precambrian green algae has remained difficult. Results Here, we present an exceptionally preserved spherical, coenocytic unicellular alga from the latest Ediacaran Dengying Formation of South China (> ca. 541 Ma), known from both external and internal morphology, fully tridimensional and in great detail. Tomographic X-ray and electronic microscopy revealed a characteristic medulla made of intertwined siphons and tightly packed peripheral utricles, suggesting these fossils belong to the Bryopsidales genus Codium. However, its distinctly smaller size compared to extant species leads us to create Protocodium sinense gen. et sp. nov. and a phylomorphospace investigation points to a possible stem group affinity. Conclusions Our finding has several important implications. First, Protocodium allows for a more precise calibration of Archaeplastida and directly confirms that a group as derived as Ulvophyceae was already well diversified in various ecosystems prior to the Cambrian explosion. Details of tridimensional morphology also invite a reassessment of the identification of other Ediacaran algae, such as Chuaria, to better discriminate mono-versus multicellularity, and suggest unicellular Codium-like morphotypes could be much older and widespread. More broadly, Protocodium provides insights into the early diversification of the plant kingdom, the composition of Precambrian ecosystems, and the extreme longevity of certain eukaryotic plans of organization.

Keywords