Cogent Engineering (Dec 2022)

Feasibility analysis of solar PV/biogas hybrid energy system for rural electrification in Ghana

  • Flavio Odoi-Yorke,
  • Stephen Abaase,
  • Mohammed Zebilila,
  • Lawrence Atepor

DOI
https://doi.org/10.1080/23311916.2022.2034376
Journal volume & issue
Vol. 9, no. 1

Abstract

Read online

Globally, reliable access to electricity improves people’s well-being, provides quality education, and promotes good health. Greenhouse gas emissions associated with fossil fuel combustion have incited an intense interest in low-carbon technologies for power generation. This study analyses the prospect of utilising a solar PV/biogas/battery hybrid energy system to provide electricity for Ghana’s remote communities. The study goal is to utilise locally available renewable energy resources to achieve a cost-effective levelized cost of electricity (LCOE) and mitigate greenhouse gas emissions. Hybrid Optimisation of Multiple Energy Resources (HOMER) software was employed to model and analyse the hybrid energy system’s technical, economic, and environmental aspects. The findings indicate that PV/biogas/battery system perform better than PV/diesel/battery and diesel-only systems in terms of cost and emissions reductions. Also, the LCOE generated from the PV/biogas/battery system is around 0.256 $/kWh. However, this LCOE is only about 64% higher than the LCOE for Ghana’s household residents. The sensitivity test indicates that the PV/biogas/battery system is sensitive to discount rates and capital subsidies, making it attractive for future development. This attests that Ghanaian rural communities without electricity access and with substantial biomass potential are likely to be electrified when given the necessary attention. Moreover, this project could be a viable alternative to rural electrification in Ghana with proper investment support.

Keywords