mSystems (Apr 2022)

Interrogation of Essentiality in the Reconstructed Haemophilus influenzae Metabolic Network Identifies Lipid Metabolism Antimicrobial Targets: Preclinical Evaluation of a FabH β-Ketoacyl-ACP Synthase Inhibitor

  • Nahikari López-López,
  • David San León,
  • Sonia de Castro,
  • Roberto Díez-Martínez,
  • Manuel Iglesias-Bexiga,
  • María José Camarasa,
  • Margarita Menéndez,
  • Juan Nogales,
  • Junkal Garmendia

DOI
https://doi.org/10.1128/msystems.01459-21
Journal volume & issue
Vol. 7, no. 2

Abstract

Read online

ABSTRACT Expediting drug discovery to fight antibacterial resistance requires holistic approaches at system levels. In this study, we focused on the human-adapted pathogen Haemophilus influenzae, and by constructing a high-quality genome-scale metabolic model, we rationally identified new metabolic drug targets in this organism. Contextualization of available gene essentiality data within in silico predictions identified most genes involved in lipid metabolism as promising targets. We focused on the β-ketoacyl-acyl carrier protein synthase III FabH, responsible for catalyzing the first step in the FASII fatty acid synthesis pathway and feedback inhibition. Docking studies provided a plausible three-dimensional model of FabH in complex with the synthetic inhibitor 1-(5-(2-fluoro-5-(hydroxymethyl)phenyl)pyridin-2-yl)piperidine-4-acetic acid (FabHi). Validating our in silico predictions, FabHi reduced H. influenzae viability in a dose- and strain-dependent manner, and this inhibitory effect was independent of fabH gene expression levels. fabH allelic variation was observed among H. influenzae clinical isolates. Many of these polymorphisms, relevant for stabilization of the dimeric active form of FabH and/or activity, may modulate the inhibitory effect as part of a complex multifactorial process with the overall metabolic context emerging as a key factor tuning FabHi activity. Synergies with antibiotics were not observed and bacteria were not prone to develop resistance. Inhibitor administration during H. influenzae infection on a zebrafish septicemia infection model cleared bacteria without signs of host toxicity. Overall, we highlight the potential of H. influenzae metabolism as a source of drug targets, metabolic models as target-screening tools, and FASII targeting suitability to counteract this bacterial infection. IMPORTANCE Antimicrobial resistance drives the need of synergistically combined powerful computational tools and experimental work to accelerate target identification and drug development. Here, we present a high-quality metabolic model of H. influenzae and show its usefulness both as a computational framework for large experimental data set contextualization and as a tool to discover condition-independent drug targets. We focus on β-ketoacyl-acyl carrier protein synthase III FabH chemical inhibition by using a synthetic molecule with good synthetic and antimicrobial profiles that specifically binds to the active site. The mechanistic complexity of FabH inhibition may go beyond allelic variation, and the strain-dependent effect of the inhibitor tested supports the impact of metabolic context as a key factor driving bacterial cell behavior. Therefore, this study highlights the systematic metabolic evaluation of individual strains through computational frameworks to identify secondary metabolic hubs modulating drug response, which will facilitate establishing synergistic and/or more precise and robust antibacterial treatments.

Keywords