PLoS ONE (Jan 2011)
Novel molecular and computational methods improve the accuracy of insertion site analysis in Sleeping Beauty-induced tumors.
Abstract
The recent development of the Sleeping Beauty (SB) system has led to the development of novel mouse models of cancer. Unlike spontaneous models, SB causes cancer through the action of mutagenic transposons that are mobilized in the genomes of somatic cells to induce mutations in cancer genes. While previous methods have successfully identified many transposon-tagged mutations in SB-induced tumors, limitations in DNA sequencing technology have prevented a comprehensive analysis of large tumor cohorts. Here we describe a novel method for producing genetic profiles of SB-induced tumors using Illumina sequencing. This method has dramatically increased the number of transposon-induced mutations identified in each tumor sample to reveal a level of genetic complexity much greater than previously appreciated. In addition, Illumina sequencing has allowed us to more precisely determine the depth of sequencing required to obtain a reproducible signature of transposon-induced mutations within tumor samples. The use of Illumina sequencing to characterize SB-induced tumors should significantly reduce sampling error that undoubtedly occurs using previous sequencing methods. As a consequence, the improved accuracy and precision provided by this method will allow candidate cancer genes to be identified with greater confidence. Overall, this method will facilitate ongoing efforts to decipher the genetic complexity of the human cancer genome by providing more accurate comparative information from Sleeping Beauty models of cancer.