E3S Web of Conferences (Jan 2019)

Capacity optimization of concentrated solar power-photovoltaicwind power combined generation system

  • Pei Huanjin,
  • Guo Su,
  • He Yi,
  • Wang Jiale

DOI
https://doi.org/10.1051/e3sconf/201911802060
Journal volume & issue
Vol. 118
p. 02060

Abstract

Read online

Due to the fluctuation and randomness of renewable resources, such as solar irradiation resource and wind resource, independent renewable power plants are not easy to generate stable and reliable power. However, multi-energy complementary power generation with energy storage can improve the power quality of renewable energy generation and meet the requirements of grid-connected, so it will be the mainstream of renewable energy generation in the future. Capacity optimization of multi-energy complementary system is the basis and key to improve the power quality and reduce cost of renewable power generation. This paper describes the capacity optimization model of concentrated solar power-photovoltaic-wind (CSP-PV-Wind) combined power generation system. The optimization objectives are as follows: (1) the power is as close to the load as possible; (2) the low overall investment of the combined power supply; (3) the high annual total power generation revenue. The improved particle swarm optimization algorithm is used to optimize the capacity configuration of CSP-PV-Wind combined power generation system, and obtain the optimal dispatch strategy. The results show that, power quality of CSP-PV-Wind combined power generation system is obviously better than that of PV-wind combined power generation system, while Surplus of Power Supply Probability (SPSP) and Loss of Power Supply Probability (LPSP) are all below 15%. However the power generation cost is still a little higher. Therefore, the strategy of reducing the area of collector and increasing the storage tank capacity will be used to decrease the generation cost in the future.