PLoS ONE (Jan 2015)
Factors Associated with In-Hospital Delay in Intravenous Thrombolysis for Acute Ischemic Stroke: Lessons from China.
Abstract
In-hospital delay reduces the benefit of intravenous thrombolysis (IVT) in acute ischemic stroke (AIS), while factors affecting in-hospital delay are less well known in Chinese. We are aiming at determining the specific factors associated with in-hospital delay through a hospital based cohort. In-hospital delay was defined as door-to-needle time (DTN) ≥60 min (standard delay criteria) or ≥75% percentile of all DTNs (severe delay criteria). Demographic data, time intervals [onset-to-door time (OTD), DTN, door-to-examination time (DTE), door-to-imaging time (DTI), door-to-laboratory time (DTL) and final-test-to-needle time (FTN, the time interval between the time obtaining the result of the last screening test and the needle time)], medical history and additional variables were calculated using Mann-Whitney U or Pearson Chi-Square tests for group comparison, and multivariate linear regression analysis was performed to identify independent variables of in-hospital delay. A total of 202 IVT cases were enrolled. The median age was 61 years and 25.2% were female. The cutoff points for the upper quartile of DTN (severe delay criteria) was 135 min.When compared with the reference group without in-hospital delay, older age, shorter OTD and less referral were found in the standard delay group and male sex, presence with transient ischemic attacks or rapidly improving symptom, and with multi-model CT imaging were more frequent in the severe delay group. In the multivariate linear regression analysis, FTN (P<0.001) and DTL (P = 0.002) were significantly associated with standard delay; while DTE (P = 0.005), DTI (P = 0.033), DTL (P<0.001), and FTN (P<0.001) were positively associated with severe delay. There was not a significant change in the trend of DTNs during the study period (P = 0.054). In-hospital delay was due to multifactors in China, in which time delays of decision-making process and laboratory tests contributed the most. Efforts aiming at reducing the delay should be focused on the optimization for the items of screening tests and improvement of the pathway organization.