Applied Sciences (Mar 2020)
Dynamic Offloading Model for Distributed Collaboration in Edge Computing: A Use Case on Forest Fires Management
Abstract
With the development of the Internet of Things (IoT), the amount of data is growing and becoming more diverse. There are several problems when transferring data to the cloud, such as limitations on network bandwidth and latency. That has generated considerable interest in the study of edge computing, which processes and analyzes data near the network terminals where data is causing. The edge computing can extract insight data from a large number of data and provide fast essential services through simple analysis. The edge computing has a real-time advantage, but also has disadvantages, such as limited edge node capacity. The edge node for edge computing causes overload and delays in completing the task. In this paper, we proposes an efficient offloading model through collaboration between edge nodes for the prevention of overload and response to potential danger quickly in emergencies. In the proposed offloading model, the functions of edge computing are divided into data-centric and task-centric offloading. The offloading model can reduce the edge node overload based on a centralized, inefficient distribution and trade-off occurring in the edge node. That is the leading cause of edge node overload. So, this paper shows a collaborative offloading model in edge computing that guarantees real-time and prevention overload prevention based on data-centric offloading and task-centric offloading. Also, we present an intelligent offloading model based on several scenarios of forest fire ignition.
Keywords