Remote Sensing (Apr 2021)

Capacity of the PERSIANN-CDR Product in Detecting Extreme Precipitation over Huai River Basin, China

  • Shanlei Sun,
  • Jiazhi Wang,
  • Wanrong Shi,
  • Rongfan Chai,
  • Guojie Wang

DOI
https://doi.org/10.3390/rs13091747
Journal volume & issue
Vol. 13, no. 9
p. 1747

Abstract

Read online

Assessing satellite-based precipitation product capacity for detecting precipitation and linear trends is fundamental for accurately knowing precipitation characteristics and changes, especially for regions with scarce and even no observations. In this study, we used daily gauge observations across the Huai River Basin (HRB) during 1983–2012 and four validation metrics to evaluate the Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) capacity for detecting extreme precipitation and linear trends. The PERSIANN-CDR well captured climatologic characteristics of the precipitation amount- (PRCPTOT, R85p, R95p, and R99p), duration- (CDD and CWD), and frequency-based indices (R10mm, R20mm, and Rnnmm), followed by moderate performance for the intensity-based indices (Rx1day, R5xday, and SDII). Based on different validation metrics, the PERSIANN-CDR capacity to detect extreme precipitation varied spatially, and meanwhile the validation metric-based performance differed among these indices. Furthermore, evaluation of the PERSIANN-CDR linear trends indicated that this product had a much limited and even no capacity to represent extreme precipitation changes across the HRB. Briefly, this study provides a significant reference for PERSIANN-CDR developers to use to improve product accuracy from the perspective of extreme precipitation, and for potential users in the HRB.

Keywords