Plasma (Sep 2023)

Study of Atmospheric Plasma-Based Mass Separation System for High-Level Radioactive Waste Treatment

  • Sharif Abu Darda,
  • Hossam A. Gabbar

DOI
https://doi.org/10.3390/plasma6030041
Journal volume & issue
Vol. 6, no. 3
pp. 592 – 610

Abstract

Read online

Solid spent nuclear fuel from nuclear power plants contains 3.4% fission products (80–160 amu), contributing to a radioactivity level of over 99.8%. On the other hand, liquid high-level radioactive waste (HLRW) from spent fuel reprocessing is composed of 98.9% bulk elements (0–60 amu) with 0.1% radioactivity. A separation mechanism for the mass categories into groups presents unique opportunities for managing HLRW in the long term with a considerable cost reduction. This paper proposes a thermal plasma-based separation system incorporating atmospheric-pressure plasma torches for HLRW mass separation into low-resolution mass groups. Several engineering issues must be addressed, such as waste preparation, waste injection into the plasma, and waste collecting after mass separation. Using the COMSOL Multiphysics simulation, the generic system can be studied using noble gas mass separation, and the mass filter capabilities can be further analyzed. This paper provides the history of plasma-based mass separation. The functional modelling of a thermal plasma mass separation system is proposed under atmospheric pressure. Finally, aspects of mass separation simulation using the noble gases argon and helium inside the plasma mass separation system are studied via COMSOL Multiphysics.

Keywords