Photonics (Nov 2023)

Quantum Correlation Resource Recycling via Sequential Measurements: Theoretical Models and Optical Experiments

  • Xianzhi Huang,
  • Liyao Zhan,
  • Liang Li,
  • Suhui Bao,
  • Zipeng Tao,
  • Jiayu Ying

DOI
https://doi.org/10.3390/photonics10121314
Journal volume & issue
Vol. 10, no. 12
p. 1314

Abstract

Read online

Quantum correlation is a key resource for a variety of quantum information processing and communication tasks, the efficient utilization of which has been a longstanding concern, and it is also one of the main challenges in the application of quantum technology. In this review, we focus on the interaction between quantum measurements and quantum correlations by designing appropriate measurement strategies, specifically exploring the trade-off between information gain and disturbance degree in weak measurements to ensure that quantum correlations from the same source can be shared among multiple independent observers. We introduce the basic knowledge and classification of quantum measurements, investigate the weak measurement scenario, and show the theoretical model construction of quantum correlation recycling in the original works. We summarize the theoretical and experimental development process and the latest progress in this field. Finally, we provide an outlook for more quantum resource applications that can profit from the optimization of quantum measurement strategies.

Keywords