Structural and Optoelectronic Properties of Two-Dimensional Ruddlesden–Popper Hybrid Perovskite CsSnBr<sub>3</sub>
Guangbiao Xiang,
Yanwen Wu,
Yushuang Li,
Chen Cheng,
Jiancai Leng,
Hong Ma
Affiliations
Guangbiao Xiang
Shandong Provincial Key Laboratory of Optics, Photonic Device and Collaborative Innovation Center of Light Manipulations and Applications, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
Yanwen Wu
Shandong Provincial Key Laboratory of Optics, Photonic Device and Collaborative Innovation Center of Light Manipulations and Applications, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
Yushuang Li
Shandong Provincial Key Laboratory of Optics, Photonic Device and Collaborative Innovation Center of Light Manipulations and Applications, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
Chen Cheng
Shandong Provincial Key Laboratory of Optics, Photonic Device and Collaborative Innovation Center of Light Manipulations and Applications, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
Jiancai Leng
School of Electronic and Information Engineering (Department of Physics), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
Hong Ma
Shandong Provincial Key Laboratory of Optics, Photonic Device and Collaborative Innovation Center of Light Manipulations and Applications, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
Ultrathin inorganic halogenated perovskites have attracted attention owing to their excellent photoelectric properties. In this work, we designed two types of Ruddlesden–Popper hybrid perovskites, Csn+1SnnBr3n+1 and CsnSnn+1Br3n+2, and studied their band structures and band gaps as a function of the number of layers (n = 1–5). The calculation results show that Csn+1SnnBr3n+1 has a direct bandgap while the bandgap of CsnSnn+1Br3n+2 can be altered from indirect to direct, induced by the 5p-Sn state. As the layers increased from 1 to 5, the bandgap energies of Csn+1SnnBr3n+1 and CsnSnn+1Br3n+2 decreased from 1.209 to 0.797 eV and 1.310 to 1.013 eV, respectively. In addition, the optical absorption of Csn+1SnnBr3n+1 and CsnSnn+1Br3n+2 was blue-shifted as the structure changed from bulk to nanolayer. Compared with that of Csn+1SnnBr3n+1, the optical absorption of CsnSnn+1Br3n+2 was sensitive to the layers along the z direction, which exhibited anisotropy induced by the SnBr2-terminated surface.