International Journal of Molecular Sciences (Apr 2022)

Antinociceptive and Antiallodynic Activity of Some 3-(3-Methylthiophen-2-yl)pyrrolidine-2,5-dione Derivatives in Mouse Models of Tonic and Neuropathic Pain

  • Anna Dziubina,
  • Anna Rapacz,
  • Anna Czopek,
  • Małgorzata Góra,
  • Jolanta Obniska,
  • Krzysztof Kamiński

DOI
https://doi.org/10.3390/ijms23074057
Journal volume & issue
Vol. 23, no. 7
p. 4057

Abstract

Read online

Antiseizure drugs (ASDs) are commonly used to treat a wide range of nonepileptic conditions, including pain. In this context, the analgesic effect of four pyrrolidine-2,5-dione derivatives (compounds 3, 4, 6, and 9), with previously confirmed anticonvulsant and preliminary antinociceptive activity, was assessed in established pain models. Consequently, antinociceptive activity was examined in a mouse model of tonic pain (the formalin test). In turn, antiallodynic and antihyperalgesic activity were examined in the oxaliplatin-induced model of peripheral neuropathy as well as in the streptozotocin-induced model of painful diabetic neuropathy in mice. In order to assess potential sedative properties (drug safety evaluation), the influence on locomotor activity was also investigated. As a result, three compounds, namely 3, 6, and 9, demonstrated a significant antinociceptive effect in the formalin-induced model of tonic pain. Furthermore, these substances also revealed antiallodynic properties in the model of oxaliplatin-induced peripheral neuropathy, while compound 3 attenuated tactile allodynia in the model of diabetic streptozotocin-induced peripheral neuropathy. Apart from favorable analgesic properties, the most active compound 3 did not induce any sedative effects at the active dose of 30 mg/kg after intraperitoneal (i.p.) injection.

Keywords