P. mirabilis-derived pore-forming haemolysin, HpmA drives intestinal alpha-synuclein aggregation in a mouse model of neurodegenerationResearch in context
Eugene Huh,
Jin Gyu Choi,
Yujin Choi,
In Gyoung Ju,
Bora Kim,
Yoon-Jung Shin,
Jong Min An,
Myoung Gyu Park,
Sung Vin Yim,
Su Jin Chung,
Sang-Uk Seo,
Dokyoung Kim,
Chun Hyung Kim,
Dong Hyun Kim,
Myung Sook Oh
Affiliations
Eugene Huh
Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea; Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
Jin Gyu Choi
Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
Yujin Choi
Department of Biochemical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
In Gyoung Ju
Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea; Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
Bora Kim
Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
Yoon-Jung Shin
Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
Jong Min An
Department of Biomedical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
Myoung Gyu Park
MetaCen Therapeutics Inc. R&D Center, 256 Changryongdae-ro, Yeongtong-gu, Suwon-si, Gyeonggi-Do, 16229, Republic of Korea
Sung Vin Yim
Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
Su Jin Chung
Department of Neurology, Myongji Hospital, Hanyang University College of Medicine, 155 Hwasu-ro, Deokyang-gu, Goyang-si, Gyeonggi-Do, 10475, Republic of Korea
Sang-Uk Seo
Department of Microbiology, College of Medicine, The Catholic University of Korea, 222 Banpodae-ro, Seocho-gu, Seoul, 06591, Republic of Korea
Dokyoung Kim
Department of Biomedical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea; Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
Chun Hyung Kim
Paean Biotechnology, 17 Techno 4-ro, Yuseong-gu, Daejeon, 34013, Republic of Korea
Dong Hyun Kim
Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
Myung Sook Oh
Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea; Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea; Department of Biochemical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea; Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea; Corresponding author. Department of Biochemical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
Summary: Background: Recent studies suggesting the importance of the gut-microbiome in intestinal aggregated alpha synuclein (α-syn) have led to the exploration of the possible role of the gut-brain axis in central nervous system degeneration. Proteus mirabilis (P. mirabilis), a gram-negative facultative anaerobic bacterium, has been linked to brain neurodegeneration in animal studies. We hypothesised that P. mirabilis-derived virulence factors aggregate intestinal α-synuclein and could prompt the pathogenesis of dopaminergic neurodegeneration in the brain. Methods: We used vagotomised- and antibiotic-treated male murine models to determine the pathogenesis of P. mirabilis during brain neurodegeneration. The neurodegenerative factor that is driven by P. mirabilis was determined using genetically mutated P. mirabilis. The pathological functions and interactions of the virulence factors were determined in vitro. Findings: The results showed that P. mirabilis-induced motor dysfunction and neurodegeneration are regulated by intestinal α-syn aggregation in vagotomised- or antibiotic-treated murine models. We deduced that the specific virulence factor, haemolysin A (HpmA), plays a role in the pathogenesis of P. mirabilis. HpmA is involved in α-synuclein oligomerisation and membrane pore formation, resulting in the activation of mTOR-mediated autophagy signalling in intestinal neuroendocrine cells. Interpretation: Taken together, the results of the present study suggest that HpmA can interact with α-syn and act as a possible indicator of brain neurodegenerative diseases that are induced by P. mirabilis. Funding: This study was supported by a grant from the National Research Foundation of Korea.